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Generalized basic hypergeometric functions and the 
q-analogues of 3-j and 6-j coefficients 
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The Institute of Mathematical Sciences, CIT Campus, Taramani, Madras 600113, India 

Received 29 November 1990, in final f o n  8 May 1991 

Abstract. The Racah-Wigner algebra for the quantum group SU,(Z) is developed to derive 
explicit expressions far the q-analogues of the Van der Waerden, Racah, Wigner and 
Majumdar forms of the 3-j coefficient given in terms of sets of basic hypergeometric 
functions. Interrelationships between the members of a given set of ,4, are established 
using the reversol of series or the 4-4.' operation. Starting with the Van d,er Waerden 
set, using three transformations of ,&s, 12 other sets including the Racah, Wigner and 
Majumdar sets, have been obtained. In  the simpler case of the q-analogue of the 6- j  
coefficients, two sets of ,,&, related to each other by reuersal of series are obtained. 

1. Introduction 

Quantum deformations of Lie groups and Lie algebras or quantum groups (Sklyanin 
1982, Kulish and Sklyanin 1982, Kulish and Reshetikhin 1982, Drinfeld 1986a, b, Jimbo 
1986), which are strictly deformations of the universal enveloping algebra of an 
underlying Lie group, are of great importance for applications in diverse fields such 
as classical and quantum integrable systems, in quantum field theory, in statistical 
physics, and in the theory of basic hypergeometric functions. The quantum group 
SU,(2), which is a quantum deformation of SU(2), has been extensively studied 
(Sklyanin 1982, Kulish and Reshetikhin 1983, Jimbo 1986, Drinfeld 1986a, b, Kirillov 
and Reshetikhin 1988, Bo-Yu Hou et a /  1989, MacFarlane 1989, Biedenharn 1989). 
The Racah-Wigner algebra for SU,(2) has been developed by Kirillov and Reshetikhin 
(1988) and by Bo-Yu Hou er a /  (1989). 

The q-analogues of the Racah-Fock formulae for 3-j coefficients were first obtained 
by Vaksmann and Soibelman (1988). Other representations of the q-analogues of the 
3-j coefficients-viz. the Van der Waerden and Majumdar formulae-as well as their 
symmetry properties were found by Kirillov and Reshetikhin (1988), and by Groza et 
a /  (1990)'r. Kachurik and Klimyk (1990) have also given the q-analogue of the 6- j  
coefficient. These authors note that the q-analogues of the 3-j and the 6-j coefficients 
correspond to the basic hypergeometric functions ,&(q)  and 443(q), respectively. 
Bo-Yu Hou et al (1989) have computed in detail the explicit forms of the q-3-j and 
the 9-6-j coefficients for the SU,(2) algebra, in agreement with the Kirillov- 
Reshetikhin forms but for changes in the definitions for the basic numbers. Bo-Yu 
Hou et a/  (1989) listed several explicit values for the 9 -3-j and the 9 - 6-j coefficients, 

t This will be referred to as reference I 
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besides proving the quantum Racah sum rule (see also Koelink and Koomwinder, 
1989, Nomura, 1990). 

Our aim in this article is to establish the full connection between the q-3-j  and 
the q-6-j  coefficients on  the one hand and the basic generalized hypergeometric 
functions-viz. vP2 and +4,, respectively-on the other. Groza et ol(1990) have recently 
studied the q-analogues of the well known classical expressions for Clebsch-Gordan 
coefficients of U,(SU,) on the basis of the theory of basic hypergeometric functions. 
Kachurik and Klimyk (1990) obtained new expressions for the Racah coefficients of 
the quantum algebra U,(SU2) also with the help of the results of the theory of basic 
hypergeometric functions. We present our results on q -3-j  and the q -6-j  coefficients 
from a different viewpoint. In the case of the 3-j  and 6- j  coefficients, Rajeswari and 
Srinivasa Rao (1989) and Srinivasa Rao et a /  (1975, 1977) showed that there exist four 
sets of 3F2(1)s for the 3-j coefficient and two sets of ,F,(l)s for the 6-j coefficient, 
respedivc!y. On!y ane member of!hesc SP!S were referred !a common!y in !he !iterEt.re 
until then. In the present work, the q-generalizations of these sets of hypergeometric 
functions are obtained using the transformation theory of basic hypergeometric func- 
tions. In the case of the q -3-j coefficient, we obtain the q-analogues of the set of six 
3F2(l)s (Srinivasa Rao 1978) and show that there exist, for the Van der Waerden form, 
sets of 3+2s corresponding to either the even or the odd permutations of the columns 
of 
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k, i2 ; jq  
and these subsets are related to one another by the reversal of series and/or the q + q-' 
substitution. The complete schematic picture which emerges reveals interesting slruu~ 
rures, viz. four sets of three 3q52s which are related to one another either by reversal or 
q + q-I substitution and these in the limit q + 1 lead to the even/odd permutation 
counterparts of the set of six ,F2(1)s. Starting from this highly symmetric Van der 
Waerden set of 3+2(q)s for the q -3-j coefficient, 12 sets of 3g52(q)s have been obtained 
with the help of three well known transformations for ,&(q)s. Each of the 12 sets 
contains 12 members. The results of reference I referred above correspond to seven 
members of this full realization of the connection between the q -3-j coefficients and 
&>(q)s and these identifications are made as and when they arise. 

The q-analogue of the 6-j  coefficient is simpler (Kachurik and Klimyk 1990), mainly 
due to the expression being symmetric under the q + q-' substitution. In this case the 
q-generalizations of our results for the 6-j coefficient lead to two sets of &,(q)s-the 
set I contains three members and the set I1  contains four members-which are related 
to each other by the reversal of series. The use of the q-Bailey transformation on a 
member belonging to set 1 of the Saalschutzian 4+3(q) yields the result of Kachurik 
and Klimyk (1990). In the q + 1 limit, we obtain the corresponding sets I and 11 Of 
4F3(1)s derived by Srinivasa Rao er a /  (1975) and Srinivasa Rao and Venkatesh 
(1977). respectively. Particular cases of our results presented for the q-3- j  and the 
q-6-j coefficients are contained in reference I and Kachurik and Klimyk (1990) 
respectiveiy. 

In section 2 we give the essential notation for the basic hypergeometric functions. 
In section 3, the required transformations and reversal formulae necessary in our study 
are given. I n  section 4, all the sets of for the q-3- j  coefficient are derived and 
their interrelationships leading to the schematic picture are established. In section 5,  
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the two sets of 4#3s for the 9 -6-j coefficient are derived and they are shown to be 
related to one another through the reversal of series. Section 6 summarizes the results 
and conclusions. 

2. Notation 

Thequantum group SU,(2) ofSklyanin (1982,1983,1985), Jimbo (1985,1986), Drinfeld 
(1986a, b) and Woronowicz (1987a. b) is a 9-deformation of the Lie algebra SU(2) 
involving an indeterminate parameter 9. The self-adjoint operators J,, Jy, J, satisfy 
the commutation relations 

[ J , ,  JJ = *J+ (1) 

[ J ,  , J-] = [2Jz] (2) 

where J, = J, i iJ, and the quantity within square brackets on the RHS of (2) is given 
by (4) or ( 5 )  below. However, the notation of Heine (1878) used in his study of basic 
hypergeometric functions is 

1 - 9 "  

1 - 9  
[n],H=- 

while Kirillov-Reshetikhin and the Soviet group use for the RHS of (2)  

and Bo-Yu Hou et al  use 

(3) 

Obviously, in (4) and ( 5 )  the q +  q-' symmetry is manifest. It is clear that the notations 
are interchangeable with the use of 

(6) [nl ;=q-(n-1) /2[nl ,H 

and 

[nl: 2 [nl; ( 7 )  

where n E C. 
Throughout this article, we use only the Heine (1878) notation (3), since this is the 

one adopted in all the literature pertaining to basic hypergeometric functions (see 
Slater, 1966, Exton, 1983). Hence, we drop the indices on [n]; and write simply [ n ]  
to represent the R H S  factor of (3). 

The 9-gamma function has the property 

r , (n)=[n- l ] !=[n- l ] [n-Z]  ... [21[11 with [O]!= 1. ( 8 )  

Jackson (1910) has shown that Tu satisfies the property 
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where 
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S,(X+oJ) = -q-"'"s,(x).  

From (9) and (lo), it is straightforward to show that 

3. Required transformations 

The terminating generalized basic hypergeometric function (or series) is defined 
(Gasper and Rahman.1990) as  

where aI, . . . , U .  are the numerator parameters, the (U + 1)th numerator parameter 
denoted by q-' determines the terminating nature of the series and p,, . . . , p,, are the 
denominaior parameiets. W'nen U = p ,  me iaciw 1 . .  .j. oecumcs I, an0 me uenniiion 
(13) reduces to the one given in Bailey (1935) and Slater (1966). In (13) the notation 
of Watson is used in writing a in place of qa, so that 

_ I ~ - c - . A . . r  , o - " I ~ ~ . - ~ ~ . . . *  ~ ~ ~ > . . ~ ~  > - C ~ ~ . . .  

[a]. = (1 -a)( l  - a q ) ( l  -nq2). . . (1 -aq"-') 
m 

= n ~~ ( I -aq") / ( l -aq"+")  
m =o 

for n = 1,2 , .  . . . Notice that 

where 

Conventionally, in the literature on basic hypergeometric functions, the Watson 
notation is adopted only for positive parameters, and a negative parameter is always 
wrlt!e!: zs 4-'. !E this zrtir!:, wp depart from this convention and choose to use the 
Watson form for negative as well as positive parameters and, to make the termination 
obvious, when a is a negative parameter we write the q-analogue of the Pocchammer 
symbol as 

[a]" = (1  - f ) ( 1  - q " + ' ) ( l  -q"+2). . , ( 1  -cy+"-') (17) 
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instead of (14). This notation enables us to write, for instance, the basic hypergeometric 
function part of the q -3-j coefficient as 

3@2(A, B, C ;  0, E ;  q, 4 )  

which in the limit q + 1 reduces to 

,FAA, B, C ;  0, E ;  1 )  

where A, B and C are negative parameters. This is aesthetically satisfying since, in 
our notation, the numerator and denominator parameters for the 3+2(q; q )  and the 
3 F 2 ( l )  are one and the same. 

It is straightforward to derive the reversal formula for a generalized basic hyper- 
geometric series, when the first s s p  of the numerator parameters and the first r s p  
denominator parameters are negative (with the termination being determined by the 
( p +  1)th numerator parameter), as 

-a i , .  . .1 -as, a>+,, . . . ,apr  - n ,  

-PI,. . . 1  -Pt, P , + I , .  . . , Pp > 4. z ]  

= (-l)"(s-r+ll " -n(n+11/2  -n(a,+. . .+ay-p ,... -ll,,+,,("-lJ(7-,, 
2 4  4 

P + 1 %  

l + p , - n , l - p , + l - n  ,..., l - p p - n , - n  

4, - q , + . . . + a , -  a,+ ,... - U , - @  ,... -p,+p,, ,... +D,,+"+, 

l + a , - n  ,..., l + a , - n , i - a , , , - n  ) . . _ ,  1 - a , - n  ' 

1 

- n , .  , . , X P + l &  

2 

where the p+,@p(q, z )  is well defined only when the parameters satisfy the condition 

(19) 
In the limit q +  1 ,  we get the generalization of the reversal formula for ,,+tF,,(z). It is 
a generalization in the sense that while the termination of the series is governed by 
the negative numerator parameter -n, it allows for s of the numerator ( t  of the 
denominator) parameters being negative. The generalized reversal formula (18) is 
precisely the one we require in our studies of q -3- j  and q -6-j coefficients which 
have more than one of the numerator parameters being negative. 

The q-generalization of the Weber and Erdelyi (1952) transformation I for &(I )  
is given by Askey and Wilson (1985) as 

min(PI ,P2 ,..., &)*min(a1,  a2 ,..., a . ) * n .  

where we have used the notation 
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In the limit q + 1 ,  we have 
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where we have used the notation 

Use of the above Weber-Erdelyi transformation I for &(l)  recursively, with y and s 
interchanged, results in the Weber-Erdelyi transformation I1 given by 

with the usual notation for the Pocchammer symbol (16) and 

s =  y + s -  a - p + n .  (25) 
A recursive use cannot be made of (20) as such, since the LHS 3$2( q )  is a polynomial 

in q while the RHS 3 + 2 ( q 1 i B - y )  is a polynomial in q'+@-'. If (20) were a transformation 
given in terms of the general variable z, then it could have been used recursively. What 
we have in (20) is a transformation for the particular case z = q .  Thus, (20) is a 
q-generalization of (22) and not the q-generalization of (22). However, after the reversal 
of the 3+2(q1+"y) on the RHS of (201, we get 

= rqra + n, s - p + n, 7, s; (Y, s - p. Y + n, s + n ]  

-n,  y -  a, 1 - S - n 
, 

Y ]  1 -a  - n, 1 + p  - 8 -  n ' 

and now (20') can be iterated. One such iteration results in a 3+2(q' -8) ,  which on 
reversal can be shown to yield (27). 

The transformation (20) can be obtained as a special case of a transformation given 
by Sears (1951) for balanced &(q)s ,  viz. 

whose parameters obey the Saalschutz condition 

1 - n + a + b + c = d + e + f  

which in Watson's notation is: q'-"abc = de$ 
Letting c,f+O,  yields after some simplification (20). If we let c, d +O, then we get 

which is a q-analogue of the Weber-Erdelyi transformation (11) given by (24). 
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If we let a, f +  0, then we get 

-n, d - b, d - c  
9"' b+r -d i  3 4 2  [ d, d + e - b - c ' ' q , q ]  (28) 

-n b c [ d  + e -  b - c ] .  
3 4 2 [  d, ' e ' ; q , q ] =  

,el. 

which is a terminating q-analogue of the Kummer-Thomae-Whipple-formula (see 
Gasper and Rahman, 1990: (3.2.8), p 61) ,  which in the limit q +  1 yields the trans- 
formation 

(29 )  
-n, b, c ( d  + e - b - e ) ,  -n, d - b, d - c 

3F2[  d , e  ; I ] =  ( e ) .  3 F 2 (  d, d + e -  b - c 

The reversal and the other transformation formulae given above are used in our 
study of the sets of generalized basic hypergeometric functions and the q-analogues 
of 3-j and 6- j  coefficients. 

4. q-analogues of the 3-j coefficients 

The starting point f& us is the q-analogue of the Van der Waerden form of the 3-j 
coefficients given explicitly by Kirillov and Reshetikhin (1988) and others, as 

= ( -I)J,-J2rm?[2j3 + 1] - ' /2q '">rm~ '/Oc'i 12 
ml"'>.,l-m, 

(-1 jJ,-,l-m, ~ 1 / 4 i ~ , ~ J ~ i i + ~ ~ / 2 I i J , ~ ~ ~ ~ ~ ~ , ~ + ~ ~ / 6 i ~ ~ ~ - ~ , l ~  ( , , ' 9 R J t J J 3 )  
- - 

[ j i + m ; ] ! [ j t - m j ] !  

where 

a ,  = j ,  - j 3 +  m2 

P2 = j 2  + m2 P3 = j ,  + j 2  -i3 ( 3 2 )  

max(0, al .  a,) 6 n min(P,, P 2 .  P , )  (33 )  

m,+ m 2 + m 3  = 0 and I = j ,  + j 2 + j , .  (34)  

= j 2  - j 3 -  m, P I  = j ,  - m ,  

with 

In the expressions (30) and (31)  above, all the factors are in the Kirillov-Reshetikhin 
notation, viz. ( 4 ) .  To enable us to write ( 3 0 )  in terms of a ) & ( q ) ,  we change over into 
the Heine notation ( 3 ) ,  and after simplification using the relevant definitions given in 



This van der Waerden form of the q -3-j  coefficient is manifestly invariant under the 
3 !  permutations of p! ~ P2:  B, and the 2 !  permutations of a!. a2. Thus: it exhibits 12 
symmetries of the q -3- j  coefficient. These are, however, not the 12 symmetries which 
arise due to the column permutations of the q -3- j  symbol and m,+ -mi .  To account 
for the 72 symmetries exhibited by this coefficient when it is represented as the q - 3  x 3 
square symbol of Regge (1958), 

1 j ;  j >  i. \ I(-jl + j 2 + j 3  Jt;j2+J3 j ,  +j2-j311 

\ml m2 
''I = 11 j l  - m ,  J ~ -  m3 j 3 - m  ll=IIRi~ll (36 )  

~ , + m ,  j 2 + m 2  j a + m 3  

it is necessary to obtain five other for the q -3- j  coefficient. The presence of the 
q-factor inside the summation o n  the RHS of (30) clearly reveals (i) the non-invariance 
of (30 )  under q + q - '  substitution and (ii) it contributes to the separation of the set 
of six 3r$2s into two sets of three ,&s which correspond to the even and odd permutations 
of the columns of 

(L, k2 j 3 )  
m3 9 

As in the case of the 3-j coefficient (Srinivasa Rao 1978) the required five series 
representations (or 3 r $ 2 s )  are obtained by replacing the summation index n in (3Uj by 
n - a k ( k = 1 , 2 ) a n d p , - n ( l = 1 , 2 , 3 ) . 0 f t h e s e ,  the n-ah(k=l,2)substitutionsalong 
with (30) will give rise to  the set of three ,42(q)s: 

where 

A = -RZr E = - R  3 .> C = - R  I ,  

D = l + R , , -  R2, E = I +  R2, - RI, (38 )  

u( rst) = R, ,  - R,, P =+(AB + BC + CA) -$ (A+  B + C )  + i ( D +  E - 2) 
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for even permutations of ( r s t ) =  (123). For the permutation (rsf)=(123) in (37) and 
(38), we obtain (43) of reference I. 

The substitutions p, - n ( l =  1,2,3) in (30) give rise to 

( ,.L~ .iz h )  
m2 m~ 

A', B', C' 
X(I'q(l-A',l-B', l-C',D',E'))-'  , r$z[  D',E, 

where 

.. A' = - R Z s  ~ R'= -R;,  C '=-R;<  - n'= ! + Rji -& 
E ' =  I +  R,, - R,, u( rsf) = R,, - R2, + J (40) 

P = f ( l  -D')(l - E ' )  -:(A'+ B'+C')+f(D'+ E ' - 2 ) .  

and s '=J+2,  for even permutations of (rst)=(123). Interchanging r e s  in A', E', 
C', D', E' of (40) gives A, B, C, 0, E given by (38) for odd permutations of (123). 
i t  is customary to caii the basic hypergeomeiric series in q as type i ana the series in 
q"(s '=  5 + 2 =  D ' + E ' - A ' - B ' -  C ' )  as type 11. Since we now have ,r$;s occurring in 
(37) and (39) being considered as sets of three corresponding to even and odd 
permutations of ( rs t )  = (123), respectively we introduce the notation :+; (q)  and 
3,$,2( 4') to denote these sets. 

We notice that the reversal formula (18) precisely takes a polynomial in z to a 
CdS1' 

a p+l&,(q. q )  and a p+lr$p(q, 4'). Therefore, starting with (37) and (38) if we use the 
reversal formula (18), we will arrive at (39) and (40). The question arises as to whether 
these two sets provide the q-generalization for the set of six 3F2( 1)s. For, they belong 
to two different types being polynomials in q and q', respectively. Also, Bo-Yu Hou 
et al (1989) have shown that 

I 1  0 

po~ynam~ai  in q"'/. and, for ihe = 4, ( is)  gives a reiaiionship between 

(41) 
J 3  1 ( j ,  j 2  

h),(  m, m2 m3 

( il J 2  j.) ~~, - - (-l)j,+j2+j, ( J 2  is h ) . 
~ m ;  m; ...~, \ m 2  m i  .T,, 

(L, m2 J 2  m, 

but, instead 

(42) 

This is due to lack of symmetry of (30) under q + q-' .  In the set of three : r$;(  q )  given 
by (37), (38), if we substitute q+q- ' ,  we get 

(L, m2 m3 q - h  J z  j' 1 . ,~ 
0,' 
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where u ( r s t )  and s = J + 2  are as in (38 )  but 
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DE 
P = - : ( A + B + c ) - ; ( D + E + I ) + - - .  2 (44)  

This set of three series corresponding to even permutations of (rst) = (123) will be 
denoted by '$$;(qs). These along with the set of ':q5;(qs) given in (39) ,  (40) constitute 
the set of six 3+2( q')s  which provide a q-generalization of the set ofsix &( 1) functions. 

In the set of three ':q5;(9') functions given by (39) ,  (40). if we substitute q +  9-', 
we get 

(L, J 2  j 2 )  
m2 m3 q - i  

(37') 1 x(r,(l -A, 1 -B, 1 - C, 0, E ) ) - '  3+2 [ A' D, B. E ; 4 ? 4  

where u(rs t )  is as in (40 )  and P is as in (38 ) .  Notice that (37') differs from (37 )  only 
through a phase factor, consistent with (42) .  This set of three series representations 
correspond to odd permutations of ( r s t )  = (123) and will be denoted by : + ; ( q ) ,  which 
along with the set of three .$+;(9) given by (37 ) ,  (38 )  constitute the set of six )&(9) 
functions. 

The two sets of three functions :&'(9) and ':q5Xqs) can be shown to be related to 
one another by reversal of series. The interconnection between the four sets of three 
,b2s is given in the schematic figure 1. 

Set  of three Sot of three 

I I 

Figure 1. Interconnections between the four sets of three ,,#,, functions (defined in the text). 

In the limit 4+ 1, the above-described sets of functions will reduce to two sets 
of three )F2( 1) functions which correspond to even or odd permutations of the columns 
of the 3-j coefficient. This is schematically shown in figure 2 .  

Thus, either the three :+;(9) functions and the three :q5;(q) functions, or the three 
' .:+;(q') functions and the three ' ; + ; ( q ' )  functions, constitute equivalent q-general- 
izations of the set of six 3F,(1) functions for the 3-j coefficient and their inter- 
relationships are as in figure 1. 

Starting with the Van der Waerden set of six 3q52 functions (belonging to set I or 
set I 1  corresponding to series expansions in q or 9', respectively), using the transforma- 
tions (20),  (27 )  and (28). we get different formulae for the 9 -3-J coefficient. First, we 
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Set of three Set of three 

even perms add perms 

Set of three ct Set of three ct Set of three tt Set of three 
eavarsia, 

I I 

Figure 2. Set of six ,F,(l)s and their q-generalizations 

use (20) to obtain the q-generalizations of the Wigner, Racah and Majumdar forms 
for the q-3- j  coefficient. These forms are derived by simply using the q-analogue of 
the Erdelyi-Weber transformation, given by (20), on (37) and (37'), in three different 
ways. Corresponding to (37), the general form for the q -3-j coefficient thus obtained 
is 

xTJ1 -D';  1 -A' ,  1 - C', E' ,  1 +A'-  D', 1 + E ' -  E' ,  I +  C ' - D ]  

with A', E', C' ,  D , E ' a s i n  table 1, & = s ' = D ' + E ' - A ' - B ' - C ' a n d  

P = f[ ( E ' -  B')(A' + C')  - A'C'] + 6 ( 2 8 ' -  A'- C' - D' - E'  - 1). (46) 

This set corresponds to ' : @ ; ( q ' )  in our notation, since (37) and hence (45) is for even 
permutations of ( r s t )  = (123). Similarly, corresponding to (37') we would get a general 
expression (45') which differs from (45) only in that the LHS of (45') would be 

( L1 J2 j 3 )  
m2 m3 y- i  

and u ( r s t )  would be as in (40) for odd permutations of (rst)=(123) and P is as in 
(46). (We have not written down (459, explicitly.) 

This set given by (459, (46') corresponds to ' . :$;(q')  in  our notation. Thus, the 
Weber-Erdelyi transformation (20) when applied to (37), (37') results in the transforma- 
tion of the set of Van der Waerden :4Y(q) into the Racah, Wigner or Majumdar set 

Here, it is to be noted that (20) is a q-analogue of the Weber-Erdelyi transformation 
of ':$Y(q> ). 

I and not the exact analogue, since (20) is not for 
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Table 1. Use of the  q-analogue ofthe Weber-Erdelyi transformation I given by (20) mults 
in the expression (45). Column I refers to the use of (20). column 2 gives the numerator 
and denominator parameters of the ,$2 in (45) and column 3, the identification of the 
result of the use of (20) on (37) and ( 3 7 ) .  

Parameters in (20) Parameters in (45) Identification of (45) 

- n = - R , ,  A ' = - R  I ,  q-Racah 
I I e." o = - R , ,  B =  I + R , ,  3 4 2  ( 4 " )  

P = - R , ,  C ' = - R , ,  
Y =  I + R , , - R , ,  
S = I + R,, - R,,, 

D =  -R ,<  - R,, 
E ' = I + R , , - R , ,  

- n = - R , ,  A ' = - R  3s q- Majumdar 
I I C?=-R,, E ' =  1 + R , .  3 4 ,  iq, ' )  

y =  1 + R, , -  R,, IS 3, 

I ,  
P = - R , ,  C'= - R  

S =  I +  R 2 , -  R , ,  
D ' = - R  - R  
E ' =  I +  R2, -  R,. 

- n = - R , .  A ' = - R , ,  q- Wigner 
a = - R , ,  E =  I + R , ,  ':$;."(s" 

y = l +  R,, - R,, I ,  I ,  

P = -Rav C ' = - R , ,  
D ' = - R  - R  
L - 1 7  .x2,-.xlr r . I - I L D  D r - l L D  D " - 1 7  "*, - 

From the ':4;."(q') forms by reversal :dT(q) and by q+q-':+>"(q) are obtained, as 
given by the schematic diagram, figure 1. Note: As in the case o f  Rajeswari and Srinivasa 
Rao (1989). the identification of y as I + R, , -  R,, and 8 as I + R,, - R,, results only in 
the same three Sets but in  a different order, namely q-Racah, q-Wigner and q-Mvlajumdar 
forms. 

but only for 

Due to this reason (as stated in section 3), we cannot apply (20) directly to the Van 
der Waerden sets of three .jq~;-(9') given by (39) and (42). Eiowever, use vf reversa; 
formula on the Racah, Wigner or Majumdar set of ':4;(9') and 'lG(9') given by (45) 
and (45') results in the corresponding :@; (9 )  and :& (9 ) ,  respectively-the resultant 
expressions after algebraic simplifications can be shown to be the same in form as (45) 
and (45') but with E = 1 a n d  

I, .*" ,  

P =$/?'(A'+ C ' -  D')  + ; ( E ' +  D'+ E ' - 2 A ' -  2C'-2). (46') 

Equivalently, use of 9 + 9-' on the Racah, Wigner or Majumdar set of ':@'(q') results 
in : @ ( 9 ) ,  as  per the schematic diagram of figure 1. Thus, the Racah, Wigner, and 
Majumdar set of six :4y(9) and the equivalent set of six ':4?(9') can be generated 
from the corresponding Van der Waerden sets with the use of the Erdelyi-Weber 
transformation 1. 

ide~~!ifi .r~!io~s !m!??mn !) to be made in (20) and  the 
resulting numerator and denominator parameters (column 2) for the )6J2s in expression 
(45). In column 3 are given identifications of the expression (45) as the 9-analogues 
of the Racah, Wigner or Majumdar sets of ,& functions. We can identify (416). (42) 
and (46) of reference I t o  correspond to ( r s t ) = ( 1 3 2 )  in the 9-Racah :4;(q) set, to 

Tab!. 1 s-mmzrizcs 
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(rst)=(123) in the q-Racah '$$;(q*) set and to (Is[)= (321) in the q-Wigner :q%(q) 
set, respectively. 

The use of the transformation (27)-viz. the q-analogue of the Weber-Erdelyi 
transformation 11, which exhibits manifestly e-f symmetry-on (37) results in the 
general expression 

xr,[1 -D', 1 - E ' ;  I - A , ,  1 - B ' ,  ~ + A ' - D ' ,  

1 + A ' -  E' ,  1 + B ' -  D', 1 + B'-  E ' ,  s'] 

with A', B', C', D', E' as in table 2, E = 1, and 

P = &A'B'+ (1 - s')(A'+ E ' ) ]  -$(A'+ B'+ C')  +a(  D + E' -2) (48) 

for even permutations of (rsi) = (123); which set we denote by :&(q). Similarly, 
corresponding to (37') we would get a general expression (477, which differs from 
(47) only in that its LHS would be 

Table 2. Use of the q-analogue of the Weber-Erdelyi transformation I I  given by (27) 
results in the expression (47). Column I refers to the use o f  (27). column 2 giver the 
numerator and denominator parameters of the ,& in (47) and column 3 identifies the _̂ ...,. "r.I.- .."n ^ C i l ? >  "" <,,> ...._I ,,,., 
1v."YII "1 L,,. " I C  VI 1") "I, (>I, a,," I-" 1 .  

Parameters In (27) Parameters (47) Identification of  (47) 

-w=-R , ,  
! l = - R , ,  
b = - R , ,  
e = I + R,, - R,, 
f = I + R i , -  R,. 

R,. 
i l = - R , ,  
b = - R , ,  
e =  I +  R 3 , -  R i ,  
J =  I + R i ,  - R,. 

- n = -  

- n  = - R , ,  
a = - R , ,  
b = - R , ,  
e =  I +  R 3 , -  R,,  
/ = I  + R * , - R , ,  

A'  = -R2,  
B '=-R, ,  
C'= -, - 1  
D'= - R , ~  - R,, 
E = - R,, - Ri ,  

A , = -  R,. 
B ' = - R , ,  
C ' z - 1 -  I 
D = - Ri ,  - R,, 
E ' =  -RA,  - R,, 

A ' = - R , ,  
W - R , ,  
C'= - , - I  
D' = - R , ,  - R,,  
E ' = -  R , , - R , ,  

:m;."(q) 
( w ) = ( I 2 3 )  corresDondrto the 
q-analogue of (26)  of Raynal 

:$q"(q)  
(rssr)=(I23) corresponds to the 
q-analogue of (27) of Raynal 

:$;."(cl) 
(rrl1=(123) and mi+-mi 
corresponds to the q-analogue of 
(27) of Raynal 
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and u(rsr) would be as in (40) for odd permutations of (rst) = (123)-(we do not write 
down (47') explicitly)-which we denote by :+ ; (q ) .  Use of 9 +  9-l on these ;+Y(q) 
sets will result in ':+Y(q") and the expressions can be shown (after simplification) to 
be the same as (47), (479, except for E = s' and 

V Rajeswari and K Srinivasa Rao 

A' E' 
2 2 

P = -  (A'+ l ) + -  ( E ' +  l )+ f [D'E' - (A'+  B')(D'+ E')] 

-;(A'+ E ' +  c'+ D'+ E'+ 1 ) .  (48') 
Table 2 summarizes the identifications to be made in (27) and the resulting 

numerator and denominator parameters for the 3 + 2  in expression (47) or (47'). In 
column 3 of this table are given the identification of a member of the set (47) or (447'), 
as the q-analogue of the form corresponding to (rsr) = (123), given by Raynal (1978). 
The first and third entries in this table can be identified with equations (44) and (45) 
of reference I .  They are obtained by setting for the parameters (given in column 2 of 
table 2) (rst) = (132) in ':+;(q") and (rsr) = (321) in '&'(q"), respectively. 

The use of transformation (28)-viz. the terminating q-analogue of the Kummer- 
Thomae-Whipple formula, which exhibits manifestly b o  c symmetry-on (37) results 
in 

3 1/2 

m2 j2 m3 J3  1 
- - S,,+,,+,,,~(-l)"'"''qp ( n [ R , J ! l [ J +  l l ! )  

z , L = l  

x r , [ E ' - ~ ' ;  ~ - A ' , I + B ' - D ' ,  ~ + c ' - D ' , D ' , E ' , s ' ]  

A', E' ,  C' 
(49) 

where A', E', C', D', E' are as in table 3, E = 1 and 

A' 
P = t ( D ' -  B')(D' - C')  +- ( E ' +  C') -$(A'+ D'+ 1) +b(B'+  C'- E ' )  

2 

for even permutations of (rsr)=(123); which set we denote by : + ; ( q ) .  Similarly, 
corresponding to (37') we would get a general expression (49'), which differs from 
(49) only in that its LHS would be 

(50) 

(L, :> kJq., 
and u(rs t )  would be as in (40) for odd permutations of (rsr) = (123) (we do not write 
down (49') explicitly) which we denote by : + ; ( q ) .  Use of 9 + 9 - '  on these ;+Y(q) 
sets will result in ':+Y(q") and the expressions can be shown (after simplification) to 
be the same as (49), (49'), except for E = s' and 

P=f[(  1 - D')( 1 -s')+ A'D'] -b(4A'+ B'+ C')+f(D'+ E'-2) .  ( 5 0 ' )  

Table 3 summarizes the identifications to be made in  (28) and the resulting 
numerator and denominator parameters for the 3+2 in expression (49) or (49'). In 
column 3 are given the identification of a member of the set (49) or (49'1, as the 
q-analogue of the form corresponding to ( r s r )  = (123) given by Raynal(l978). Equation 
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Table 3. Use o f  the q-analogue of the Kummer-Thomae-Whipple transformation (28) 
results in the expression (49). The parameters in (28) and (49) are given in columns I and 
2, and column 3 giver the identification of the result of the use of (28) on (37) and(44). 
The expression (49) corresponds to :d;.o(q) from which by 9-q-I  therets ':+;.O(q'i are 
obtained, as per the scheme given in figure 2. 

Parameters in (28) Parameters in (49) ldentification (49) 

-!7=-R,, 
b=-R,, 
c = - R  I ,  

d = I +R,, -RI,  
e =  I+R,,  - R 3 -  

3, -n = - R  
L : - R  
Y -  . ~ , I  

c=-R,, 
d = I+R,,  - R 2 ,  
e =  I+R,,-R,, 

-* = - R , t  
b=-R,, 
C=-R,, 
d = I+R, , -  R,, 
e =  I +R,, - R 3 -  

-n=-R,, 
b=-R,,  
c = - R , ,  
d = I +  R,f-  R,, 
e = l +  R,,-R,, 

-n = -R,< 
b = - R , ,  
e=-R,, 
d = I  + R 3 , -  R,, 
e =  1+R,,- R,, 

- n = - R , ,  
b=-R,,  
c=-R,. 
d = I+R,,  - R,. 
e =  I+ R,, - R,. 

2, A ' - R  
B ' = l + R , ,  
C'=  1 + R,, 
D'= I+R, , -R, ,  
E ' = 2 +  R,,+ R,, 

3s A ' - R  
n , = , L Q  " - 1 , . ~ , ~  
C'=  1 + R,, 
D'= I +  R,,- R,. 
E ' =  2+ R, .  + R,, 

A = - R , ,  
B =  I +  R,, 
C ' = I + R 2 ,  
D'= I +  R2, -  R,, 
E '=2+R2,+R, ,  

A ' = - R  
B '=  I + R , ,  
C '=  I+R, .  
D =  1+ R,, - R,, 
E'=Z+R,.+R,,  

A ' = - R  
B ' = 1 +  R,, 
C '=  I + Ri, 
D =  I +  R,,- R,, 
E' = 2 + R II + R,, 

A ' - R , ,  
B = 1 + R , ,  
C'= 1 + R , ,  
D ' = I + R , , - R , ,  
E ' = 2 +  R2,+  R,, 

2,  

3.. 

( r i i ) = ( 1 2 3 )  corresponds to the 
q-analogue of Raynal F,,(O: 2 5 )  

( m i )  = (123) corresponds to the 
q-analogue of Raynal F,(O;35) 

(mi)  = (123) corresponds to the 
q-analogue of Raynal F,,(O; 24) 

(rrr)=(123)  corresponds to the 
q-analogue of Raynal(17) 

(59a)  in reference I can be identified with one member of the first entry in table 3 for 
( r s t )  =(312) in the parameter set given in column 2 for the :&(q) .  The other entries 
in this table have no equivalents in reference 1. 

We find that the use of reuersal formula on  the sets of three :+y(q) and I.$$;."(q') 
of the form (47)-obtained by the Weber-Erdelyi transformation I 1  (27) on the Van 
der .gaerden seis (37')-ieZ& one io seis of three ~ ; , $ ~ ( q ~ )  and 
:,#,y(q) of the form (49) ,  obtained by KTW transformation (28) on the Van der Waerden 
sets (37) and (37'). This is schematically shown in figure 3. 

Thus, to summarize (as far a s  the identification of the results in our paper with the 
the ones in reference I goes), in tables 1-3 are given 12 sets each of :+;."(q) and 

~ 

by (3;) 



3776 V Rajeswari and K Srinivasa Rao 

Equation (47) Equation (49) Equation (47) Equation (49) 

Set of three Set  of three Set of three 

Equation (47') Equation (49)  Equation (47') Equation (49)  

( 8 )  ( b )  

Figure 3. Role of reversol on (47), (47') resulting in (49'). (49). 

I ,  3@(q ' ) ,  where e and o represent even and odd permutations of (123). All these 12 
sets were generated from the given Van der Waerden sets of :&"'(q) and ':@y(q~'). 
In all, we have therefore listed 156 3#2 forms for the q-3-j coefficient, of which seven 
3& forms alone are given i n  reference 1. 

The middle columns of tables 1-3, as well as the expressions (45) and (45'1, (47) 
and (47'), (49) and (49') reveal their invariance under A'- C'; A++ B' and D ' e  E';  
B'c*C', respectively. As i n  Rajeswari and Srinivasa Rao (19891, only the Van der 
Waerden forms (37), (39), (43) and (44) clearly exhibit the S,XS, symmetry due to 
their invariance under the 3! numerator and 2! denominator parameter permutations. 

5. q-analogues of the 6-j coefficients 

Kirillov and Reshetikhin (1988) have explicitly derived an expression for the q -6-j 
coefficient by generalizing the procedure of Racah (1942) and obtained 

- 8  4 3 

x Z ( - l ) ' b + l I ! (  ; = I  n [ P - a i l !  j = ,  n rPj-Pl!) 

where 

a, = a i  b t  e 

PI  = a +  b t c t d  

and 

a2 = c f  d + e  a3 = a t c t f a , = b + d + f  

p2=  a + d t  e +  f p3 = b i  c +  e i  f 

max(a , ,  a z ,  a,, 4 P min(Pll  P 2 .  P 3 )  (52) 

and A.(xyz) is defined in (31). In their symmetric notation (4)! for the basic number, 
by simply replacing the q-factorials by ordinary factorials in the derived expressions 
for the q -6-j coefficient, the known expression for the 6-j coefficient can he obtained. 
This felicity does not pertain to the q - 3- j  coefficient, even for special values of its 
arguments. It is necessary to resort to the asymmetric Heine notation (3 ) ,  to enable 
one to write the q-6-j  coefficient as a basic hypergeometric series. In the Heine 
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notation ( 5 1 )  becomes 

where 

N = q -  4 (1 /4) [2P,(P,~l )+2P~iP2- l )+2~,~P,- l ) l  l l l 4 ) i P , + P , + p , ) i a , + o ~ + ~ ~ + ~ ~ )  

x q  ~ ( 1 / 4 ) [ u , ( o , + l ) + = 2 ( C l ~ + l ) + U , ( Y , + I ) + = ~ i " ~ + ) 1 ~ (  abe)A(cde)A(ac f )A(bdf ) .  
(54)  

Substituting n = 0, - p  ( j  = 1 ,2 ,3 )  in (53)  and using the same procedure adopted in 
the case of the q-3- j  coefficient, we get 

I," ," ;Iq 
= ( - l ) E + l M q P T , [  1 - E ;  1 -A,  1 - E ,  1 - C, 1 - D, F, GI 

where 

A = - R , ,  B = - R,, C=-R,, D=-Rap  

E = - R I ,  - R2p - R,, - R4,- 1 F =  1 + R3, - R3, 

G = 1 + R,, - R,, M=A(abe)A(cde )A(ac f )A(bdf ) ,  

and 

P = $ [ ( E  + I ) ( €  + 2) - ( F  - E - 2)(  F - E - 3 )  - ( G  - E - 2 ) (  G - E - 3 ) ]  

+$(F+ G - E -3)2.  (56 )  

In (56) ,  the R ,  represent the elements of the Bargmann (1962) and Shelepin (1964) 
4 x 3  symbol: 

It is to be noted that for cyclic permutations of  ( p q r )  = (123),  we obtain the set I of 
three $ & ( q )  functions which in the limit q +  1 results in the set I of three & ( l )  
functions for the 6-j  coefficient (Srinivasa Rao er a /  1975). 

Substituting n = p -ai, ( i  = 1 ,2 ,3 ,4 )  in ( 5 3 )  and adopting the same procedure, 
we get 

I," : ;Iq 
= ( - l ) A ' M q p T , [ A ' ;  1 -E', 1 - C',  1 - D', E' ,  F ' ,  G'] 

A', E', C',  D' 
E ' ,  F ' ,  G' x 4 4 3  [ 
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where 
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A'= R y 2 + R r l + R Y 3 + 2  B ' = - R  RI C ' =  - R  P 2  D' = - R,, 

E ' =  RqI  - R,, + 1 

P ' =  - : [ (A' -  5 ' -2) (A' -5 ' -3)+(A'-  C'-Z)(A'-  C' -3)+(A'-D' -2) (A' -  D'-3)] 

F = R, ,  - RDI  + 1 G'= R, ,  - R,, + 1 

+a[ (A' -  5'- C' - D' - 2)2 + 2(A' - 2 ) (  A'- 3)] (59) 
for cyclic permutations of (pqrs)=(1234).  In the limit q +  1, this set of four &(q)  
functions reduce to the set I1 of four 4F3( l )  functions for the 6-j  coefficient (Srinivasa 
Rao and Venkatesh 1977). 

The expressions ( 5 9 ,  (56) are invariant under the permutation of A, 5, C, D and 
F, G, so that each one of the three basic hypergeometric series belonging to set I 
accounts for 48 symmetries of the q-6- j  coefficient. Similarly, the expressions ( 5 8 ) ,  
(59) exhibit invariance under the permutation of B', C' ,  D' and E', F', G', so that 
each one of the four basic hypergeometric series belonging to set 11 accounts for 36 
symmetries of the q-6- j  coefficient. Thus, these eqaivalent sets are necessary and 
sufficient to account for the 144 symmetries of the q-6- j  coefficient. 

Unlike the case of the q -3- j  coefficient, the basic hypergeometric functions occurr- 
ing in (55 )  and (59) are Saalschutzians since the numerator and denominator parameters 
satisfy the conditions 

A+B+ C +  D +  1 = E +  F + G  

A' + 5' + C' + D' + 1 = E + F' + G'. (60) 

Due to this property, when the reversal formula (18) is used in (55) or ( 5 8 ) ,  the basic 
hypergeometric series which is a polynomial in q transforms into a polynomial in q' 
or q" but due to the Saalschutzian condition (60), s = E + F +  G - A  - B - C - D = 1 
and s ' = E ' + F ' + G ' - A ' - 5 ' - C ' - D ' = l .  The fact q s = q  also i s a  pointerto a sim- 
plification in the structure of the q-generalization of the 6-j coefficient in terms of 
basic hypergeometric series. It is straightforward to show that ( 5 5 )  and 5 8 ) ,  like the 
Kirillov-Reshetikhin formula for the q -6 - j  coefficient, are invariant under q + q-' 
transformation so that 

After simplifications it can be shown that reuersal (18) transforms set I ( 5 5 )  into set 
11 (58) and vice versa. 

In (551, when ( p q r ) = ( 1 2 3 ) ,  use of the &(q)  transformation (26) results in the 
new expression for the Racah coefficient given by (1 1) of Kachurik and Klimyk (1990). 
In fact, this latter equation itself can be shown to be a q-generalization of the formula 
(17) of Raynal (1979)-on which are superimposed column and 'row' permutations 
to get I; b' 3 
It  is to be noted that while a 4 h ( q )  belonging to set I or set 11 accounts for 48 or 36 
respectively of the 144 symmetries of a q - 6 - j  coefficient, the new 4@,(q)  form given 
by Kachurik aod Klimyk (1990) exhibits only eight symmetries, since permutation of 
a positive parameter with a negative parameter will not yield a known, meaningful 
symmetry (see Srinivasa Rao et a/ 1975). 
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6. Summary 

q-generalizations of the set of six rFz( l )  functions, necessary and sufficient to account 
for the 1 2  symmetries of the q -3-j coefficient have been derived. The structure of the 
q-generalization of the set has been analysed in terms of the reversal and q - f q - '  
transformations. From the symmetric Van der Waerden form for the set of six 34z 
functions, using the q-analogues of the Erdelyi-Weber transformation 1, the q- 
analogues of the Racah, Wigner and Majumdar sets were obtained. Use of the q- 
analogue of Erdelyi-Weber transformation II and the Kummer-Thomae-Whipple 
transformation on the Van der Waerden set of 342 resulted in nine sets of ,qi2 forms, 
one member of each set being a q-analogue of a ]F2(1) form found by Raynal (1978). 
Of the 156 3b2 forms listed in tables 1-3 for the q-3-j  coefficient, seven 3+2 forms 
are also given by Groza et al (1990). 

The q -6-j coefficient, unlike the q -3-j coefficient, exhibits q +  q-' symmetry. The 
q-generalizations of the sets 1 and I1 of three and four 4Fl( 1) functions, respectively, 
necessary and sufficient to account for the 144 symmetries of the q - 6 j  coefficient 
have been derived. These two sets are related to each other by the reversal of series. 
Given anypne of the 4+3 belonging to either of the sets, all the elements of the other 
set can be obtained using the reversal formula. A member belonging to set I of 443(q)s 
for the q - 6 j  coefficient, when transformed by (26), yields the 441 form given by 
Kachurik and Klimyk (1990), which is a q-generalization of formula (17) in Raynal 
(1979). 

forms for the 4-3-j and the q-6- j  
coefficients given here thus reveal the full structure of the q-generalizations of the 3-j  
and the 6-j coefficients and contribute to the complete understanding of this aspect of 
the Racah-Wigner algebra of SU,(2). 

The sets of 3+2 forms and the sets of 
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