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Generalized basic hypergeometric functions and the
q-analogues of 3-j and 6-j coefficients
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The Institute of Mathematical Sciences, CIT Campus, Taramani, Madras 600113, India
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Abstract. The Racah-Wigner algebra for the quantum group SU,_(2) is developed to derive
explicit expressions for the g-analogues of the Van der Waerden, Racah, Wigner and
Majumdar forms of the 3-j coefficient given in terms of sets of basic hypergeometric
functions. Interrelationships between the members of a given set of ;¢, are established
using the reversal of series or the g g~' operation. Starting with the Van der Waerden
set, using three transformations of ;¢,s, 12 other sets including the Racah, Wigner and
Majumdar sets, have been obtained. In the simpler case of the g-analogue of the 6-j
coefficients, two sets of ,¢,5, related to each other by reversal of series are obtained.

1. Introduction

Quantum deformations of Lie groups and Lie algebras or guantum groups (Sklyanin
1982, Kulish and Skiyanin 1982, Kulish and Reshetikhin 1982, Drinfeld 1986a, b, Jimbo
1986), which are strictly deformations of the universal enveloping algebra of an
underlying Lie group, are of great importance for applications in diverse fields such
as classical and quantum integrable systems, in quantum field theory, in statistical
physics, and in the theory of basic hypergeometric functions. The quantum group
SU,(2}, which is a quantum deformation of SU(2), has been extensively studied
(Skiyanin 1982, Kulish and Reshetikhin 1983, Jimbo 1936, Drinfeld 1986a, b, Kirillov
and Reshetikhin 1988, Bo-Yu Hou er al 1989, MacFarlane 1989, Biedenharn 1989).
The Racah-Wigner algebra for SU,(2) has been developed by Kirillov and Reshetikhin
(1988) and by Bo-Yu Hou et al (1989).

The g-analogues of the Racah-Fock formulae for 3-f coefficients were first cbtained
by Vaksmann and Soibelman (1988}. Other representations of the g-analogues of the
3-j coefficients—viz. the Van der Waerden and Majumdar formulae—as well as their
symmetry properties were found by Kirillov and Reshetikhin {1988), and by Groza et
al (1990)t. Kachurik and Klimyk (1990} have also given the g-analogue of the 6-f
coeflicient. These authors note that the g-analogues of the 3-f and the 6-j coefficients
correspond to the basic hypergeometric functions ;¢.(q) and ,¢:(g), respectively.
Bo-Yu Hou et af (1989) have computed in detail the explicit forms of the g —3-j and
the g—6-j coeflicients for the SU,(2) algebra, in agreement with the Kirillov-
Reshetikhin forms but for changes in the definitions for the basic numbers. Bo-Yu
Hou et al (1989) listed several explicit values for the ¢ —3-j and the g — 6-j coefficients,

1 This will be referred to as reference 1.
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besides proving the quantum Racah sum rule (see also Koelink and Koornwinder,
1989, Nomura, 1990).

Qur aim in this article is to establish the full connection between the ¢ —3-f and
the g—6-j coefficients on the one hand and the basic generalized hypergeometric
functions—viz. ;¢, and ,¢,, respectively—on the other. Groza ef al (1990) have recently
studied the g-analogues of the well known classical expressions for Clebsch-Gordan
coefficients of U,(SU,) on the basis of the theory of basic hypergeometric functions,
Kachurik and Klimyk (1990) obtained new expressions for the Racah coefficients of
the quantum algebra U_(SU,) also with the help of the results of the theory of basic
hypergeometric functions. We present our results on ¢ —3-j and the ¢ —6-j coefficients
from a different viewpoint. In the case of the 3-j and 6-j coefficients, Rajeswari and
Srinivasa Rao (1989) and Srinivasa Rao et al (1975, 1977) showed that there exist four
sets of ;F;(1}s for the 3-j coefficient and two sets of ,F;(1)s for the 6-j coefficient,
respectively. Only one member of these sets were referred to commaonly in the literature
until then. In the present work, the g-generalizations of these sets of hypergeometric
functions are obtained using the transformation theory of basic hypergeometric func-
tions. In the case of the g —3-f coefficient, we obtain the g-analogues of the set of six
1F5(1)s (Srinivasa Rao 1978) and show that there exist, for the Van der Waerden form,
sets of ;.5 corresponding to either the even or the odd permutations of the columns

of
( oo s )
m m; M/,

and these subsets are related to one another by the reversal of series and/orthe g—> g~
substitution. The complete schematic picture which emerges reveals interesting struc-
tures, viz. four sets of three ,¢,s which are related to one another either by reversal or
g— g~ substitution and these in the limit g > 1 lead to the even/odd permutation
counterparts of the set of six yF(1)s. Starting from this highly symmetric Van der
Waerden set of ;¢,(g)s for the g —3-j coefficient, 12 sets of ;¢,(g)s have been obtained
with the help of three well known transformations for ;¢,(g)s. Each of the 12 sets
contains 12 members. The results of reference I referred above correspond to seven
members of this full realization of the connection between the g~ 3-j coefficients and
1¢2(q)s and these identifications are made as and when they arise.

The g-analogue of the 6-j coefficient is simpler (Kachurik and Klimyk 1990), mainly
due to the expression being symmetric under the g~ ¢~' substitution. In this case the
g-generalizations of our results for the 6-j coefficient lead to two sets of ,¢3(g)s—the
set I contains three members and the set 11 contains four members—which are related
to each other by the reversal of series. The use of the g-Bailey transformation on a
member belonging to set 1 of the Saalschutzian ,¢;(q) yields the result of Kachurik
and Klimyk (1990). In the ¢ - I limit, we obtain the corresponding sets I and 1I of
+F5(1)s derived by Srinivasa Rao et al (1975) and Srinivasa Rao and Venkatesh
(1977), respectively. Particular cases of our results presented for the g—3-j and the
g —6-j coefficients are contained in reference I and Kachurik and Klimyk (1990)
respectively.

In section 2 we give the essential notation for the basic hypergeometric functions.
In section 3, the required transformations and reversal formulae necessary in our study
are given. In section 4, all the sets of ;¢,s for the g —3-j coefficient are derived and
their interrelationships leading to the schematic picture are established. In section 5,

1



g-Analogues of 3-j and 6-j coefficients 3763

the two sets of 435 for the g —6-j coefficient are derived and they are shown to be
related to one another through the reversal of series. Section 6 summarizes the results
and conclusions.

2. Notation

The quantum group SU_(2) of Sklyanin (1982, 1983, 1985}, Jimbo (1985, 1986), Drinfeld
(1986a,b) and Woronowicz (1987a, b} is a g-deformation of the Lie algebra SU(2)
involving an indeterminate parameter g. The self-adjoint operators J,, J,, J. satisfy
the commutation relations

[/, Ji];:t]:{: (1)
(Jo,7-1=[21.] (2)

where J, =J, £iJ, and the quantity within square brackets on the rus of (2} is given
by (4} or (5) below. However, the notation of Heine {(1878) used in his study of basic
hypergeometric functions is

1-4"
H_ 3
=12, 3)
while Kirillov-Reshetikhin and the Soviet group use for the rRHs of (2)
n/2_q—n/2

M%W (4)

and Bo-Yu Hou et al use

c_4-q"
[nlg="=- (5)
q g-q ]
Obviously, in (4) and (5) the ¢ > g~ ' symmetry is manifest. It is clear that the notations
are interchangeable with the use of

[nlg=q"""""*[n]y (6)
and

[n]s——7 [nlq (7
where ne C.

Throughout this article, we use only the Heine (1878) notation (3), since this is the
one adopted in all the literature pertaining to basic hypergeometric functions (see
Slater, 1966, Exton, 1983). Hence, we drop the indices on [n]; and write simply [n]
to represent the rHs factor of (3).

The g-gamma function has the property

Fa)y=[n—-1t=[n-1][n-2]...[2][1] with [0]1=1. (8)
Jackson (1910) has shown that I', satisfies the property

T (2, (1-z)= (9)

w
S, (wz)
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where
S,(x+w)=—g""S,(x). (10)

From (9) and (10), it is straightforward to show that
Lz, {1-z)

= (=131 —nz—n(n-1)/2
Tzt ml,(—z—m) D4 (1)
whisrh i tha A_analamna Af
¥¥Lllwll O LEly tf-aualusuv e
Nzl —2z2) ;
=(-1" {12)

Mz+n)T'l—z—n)

3. Required transformations

The terminating generalized basic hypergeometric function (or series} is defined
{Gasper and Rahman 1990) as

lral:QZa---ausq_n‘ -l
u+1¢p 0 n n »q,z
L Pl,pz,---Pp d

d r a LA wlir " r r_Fir— —il zr
= [e)].[@:] [2.).[g7"] [(=1) q( n/z]p (13)
r=0 [ﬂl]r[32] T ['Bp]r [q]r
where o;,..., o, are the numerator parameters, the (u+ 1)th numerator parameter

denoted by g~ " determines the terminating nature of the series and 38,,..., 8, are the
denominaior parameiers. When u = p, the factor {...]° ™" becomes 1, and ihe definition
{13) reduces to the one given in Bailey {1935) and Slater (1966). In {13) the notation
of Watson is used in writing « in place of ¢7, so that

[e],=(1=~a){l—aq)l —ag?)...(1—ag™™")

(1-eqg™)/(1—ag™") (14)

4]

I
3
18

for n=1,2,.... Notice that

lal, _(a),

li 15
LBl (B). )
where )
_[ala+1)...(at+n—-1) n:1,2,...}=l"(a+n)
(“)"_{1 n=0 I(a) (16)

Conventionally, in the literature on basic hypergeometric functions, the Watson
notation is adopted only for positive parameters, and a negative parameter is always
written as g~ " In this article, we depart from this convention and choose to use the
Watson form for negative as well as positive parameters and, to make the termination
obvious, when « is a negative parameter we write the g-analogue of the Pocchammer
symbol as

[al,=(T-g"W1—q" ) i-g"")...(A-g"""") (17)
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instead of (14). This notation enables us to write, for instance, the basic hypergeometric
function part of the g —3-j coefficient as

16:{A, B,C; D, E; ¢, q)
which in the limit g 1 reduces to
3F2(Aa Ba C; D: E; 1)

where A, B and C are negative parameters. This is aesthetically satisfying since, in
our notation, the numerator and denominator parameters for the ¢,(q; ¢} and the
1F5(1) are one and the same.

It is straightforward to derive the reversal formula for a generalized basic hyper-
geometric series, when the first s < p of the numerator parameters and the first r=<p
denominator parameters are negative (with the termination being determined by the
{ p+1)th numerator parameter), as

_als"'a_anas+!’--'sapa_n‘
» 4, 2

_Bly-"s_Blsﬁr+la"',ﬁp

— (_l)n(s—r+1)znq—n(n+l)/2

p+l¢p[

—n(n:|+...+crx—ﬁlA..—,G:)+n(rr71)(s~f)

q

[1+Cl'[ _n]n- .. [1+as"n]nfas+l]n- . [ap]n
[(1+B8i—n),...[1+8,—nl.[Biilu-.. [Bo]n

148 =n, . 148 —n1=B=n,... . 1=B,=n —n

>(p+1¢_x:|[ 3

1+a,—n,.. . A+e,—nl-a,, —n..,1-a,—n
1 a e —o —a —
q,_q (e N T, B,---‘ﬂ,"’ﬁ,_..p»-‘*‘ﬂ,ﬁ’"*‘l (18)
z

where the ,.,¢,(q, z) is well defined only when the parameters satisfy the condition
l-nin(lal 3 B2, teey JBI)'2 min(alv aZ! ey ax) == n. (19)

In the limit ¢ > 1, we get the generalization of the reversal formula for ,,,F,(z). It is
a generalization in the sense that while the termination of the series is governed by
the negative numerator parameter —#n, it allows for s of the numerator (¢ of the
denominator) parameters being negative. The generalized reversal formula (18) is
precisely the one we require in our studies of ¢ ~3-j and g —¢-j coefficients which
have more than one of the numerator parameters being negative.

The g-generalization of the Weber and Erdelyi (1952) transformation 1 for ,F,(1)
is given by Askey and Wilson (1985) as

—n! a!
3‘152[ B; ‘LQ:I
Y, 6

—n, e, 8-

g\ tEY
5,1+a—y—n’q’q ] (20)

=q" I, [y, y+n—a;, y+n, "y—a]aﬁbz[

where we have used the notation

T IxIC,[v] ...

T [all,[b]... (21)

rq[xsys”-;asbs'--]



3766 V Rajeswari and K Srinivasa Rao

In the limit g > 1, we have

-n, O’-’,‘B —n,a,&—
where we have used the notation
_Tor(y)...
r(x,y,...,a,b,...)——r(g)r(b)”=‘ (23)

Use of the above Weber-Erdelyi transformation I for ,F,(1) recursively, with y and &
interchanged, results in the Weber-Erdelyi transformation II given by

3Fz[_n’ a,ﬁ;l]=wta_)nﬁ[ a1 ;] (24)

7, (¥)a(8)s l+a—y—nl+a-8-n’
with the usuval notation for the Pocchammer symbol (16) and
s=y+6—~a—B+n (25)

A recursive use cannot be made of (20) as such, since the LHS 1¢,(g) is a polynomial
in g while the RHS ;¢,(¢'"#77) is a polynomial in ¢'*# 7. If (20) were a transformation
given in terms of the general variable z, then it could have been used recursively. What
we have in (20) is a transformation for the particular case z=g¢. Thus, (20) is @
g-generalization of (22) and not the g-generalization of (22). However, after the reversal
of the 5¢,(g""#7”) on the rHs of (20), we get

—n, a!.B_

3¢2[ ')/,6 :Q’q]
=T Ja+nd-B+nv,8,a,8-8,v+n 6+n]

R y—oa,1-8—n ,

x ; 20

3¢2[1—a—n,1+}3—6—n’q’q:} . 2

and now (20') can be iterated. One such iteration results in a ;¢,(g'~®), which on
reversal can be shown to yield (27).

The transformation (20) can be obtained as a special case of a transformation given
by Sears (1951) for balanced ,¢,(g}s, viz.

-n,ab, c
44)3[ d,e,f ’qu]

__nu[e-a]n[f_a]n , |- _n,a,d—b,d—c —l
- ellfln  “Pld1+a-e-ni+a-f~n'®9]

whose parameters obey the Saalschutz condition
l-n+a+btc=d+et+f

which in Watson’s notation is: q' "abc = def.
Letting ¢, f— 0, yields after some simplification (20). If we let ¢, d = 0, then we get

-nab _[e~al).[f~-al, .. -n,a,1+at+tb—e—f—n
3"52[ ef "’"’]' [el[f]n "”2[1+a—e—n,1+a—f—n

which is a g-analogue of the Weber-Erdelyi transformation (11) given by (24).

;q.q} (27
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If we let a, >0, then we get

-nb,c _ld+e—b-cly e [—n,d—b,d—c ]
3¢‘2[ de =q,‘1:|"' [e]. q 32 d,d+e—-b—-c’q’q (28)

which is a terminating g-analogue of the Kummer-Thomae-Whipple-formula (see
Gasper and Rahman, 1990: (3.2.8), p 61), which in the limit g -1 yields the trans-
formation

—n, b, ¢ (d+e—-b—0), (—n,d—b,d—c )
F lj=——7—7—7-——= : . 2
’ 1[ de ’ } @, \aave—p-c! (29)

The reversal and the other transformation formulae given above are used in our
study of the sets of generalized basic hypergeometric functions and the g-analogues
of 3-j and 6-j coefficients.

4. g-analogues of the 3-j coefficients

The starting point for us is the g-analogue of the Van der Waerden form of the 3-f
coefficients given explicitly by Kirillov and Reshetikhin {1988) and others, as

( h Bk )
my m, mMz/kr
j o~y ] —1/2 (my—m )6 i
= (=) R+ 1] g e e
_ (__1)jl—jz—maq(msja]u-e-|:+(1/2}(J‘,mz—;}ml]-r-(:/e)(mfm,)AR(j]jsz)

2 k] -1
: xE(—l)"q“‘"’z””“([n]! [T n-e ]! ] [ﬁ,—n]!) (30)
n k=1 i=1
where
([t i) —j2+13]![j,+j2—13]!)'“
A = —— (31)
rUrfa) ( L+t ist 11
o =j—jtm; &y = fa—ji— Bi=j—m,
Ba2=j.t+my Bi=jitj—1 (32)
max{0, a, @;} < n=min(B,, B, B1) (33)
with
m1+m2+m3=0 and J=j|+j2+j3. (34)

In the expressions (30} and (31) above, all the factors are in the Kirillov-Reshetikhin
notation, viz. (4). To enable us to write (30} in terms of a ;¢,(q), we change over into
the Heine notation (3), and after simplification using the relevant definitions given in
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section 2, we get finally

(f. J2 ja)
m, m; my/,

= (-1)“‘l_"zq('fz)(lﬂl»Bz+ﬁzf31+ﬁ;51)+(1/3)(ﬁ1+ﬁ32+.@3)—(1/6)(a|+a2)

1 3 12
X(I;II I;II [JBj_ai]![Bj]!/[ﬁn+ﬁ2+[33—a1—az+i]!)

X(Fq(l_a], 1"'(12, 1+ﬁlsl+B29 l-i-r83))-l
X3 —B1, —Ba2, —B3; 1—a;, 1— a3 q: q). , (35)

This van der Waerden form of the g —3-f coefficient is manifestly invariant under the
3! permutations of 8,, 8., 8. and the 2! permutations of a,, @,. Thus, it exhibits 12
symmetries of the g —3-j coeflicient. These are, however, not the 12 symmetries which
arise due to the column permutations of the g ~3-f symbel and m, > —m,. To account
for the 72 symmetries exhibited by this coefficient when it is represented as the g —3x 3
square symbol of Regge (1958),

/i ; i\ |!_f1+j2+j3 jl_j2+j3 j1+j2"j3
- . ”}=H jl‘ﬂh Jammy Ja—ms

nokos IR G6)
: 2 ? Jitm Jztm Jatm;

it is necessary to obtain five other ;¢ for the g —3-f coefficient. The presence of the
g-factor inside the summation on the rus of (30) clearly reveals (i) the non-invariance
of (30) under g g~ substitution and (ii) it contributes to the separation of the set
of six y¢,5 into two sets of three ,¢,s which correspond to the even and odd permutations
of the columns of

(jn 2 ja)
my My M/,

As in the case of the 3-j coefficient (Srinivasa Rao 1978) the required five series
representations (or 1¢b;s) are obtained by replacing the summation index n in (30} by
n—ak=1,2)and 8,—n(l=1, 2, 3). Of these, the n —a, (k =1, 2) substitutions along
with (30) will give rise to the set of three .,(q)s:

(J'l J2 js)
my MmMx; mMi/,

3 i
=(—1)""‘”q”(_H [Rik]!/[f+1]!)

k=1

x([,(1-A,1-B,1-C, D, E))™" 3¢2[A’D:B;EC; g, q] 37
where
A=-R,, B=-R;, C=-R,
D=1+R,,~R,, E=1+R,, - R;, (38)

a(rst) = Ry, — Ry, P=YAB+BC+CA) —¥A+B+C)+{D+E-2)
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for even permutations of (rst)=(123). For the permutation (rst}=(123) in (37) and

(38), we obtain (43) of reference I.
The substitutions 8;—n(f{=1,2,3) in (30} give rise to

(f1 J2 js)
m;, m; M/,

3 1/2
ﬂ(—l)”"’”q"(_ﬁ [R;d!./[lﬂ]!)

x(F(1—A", 1-B,1-C, D', E'))"" 3¢2[A;{)',?’};'; g, qs'] (39)
where
A'=—R; B'=-R;, C'=-Ry D'=1+R;,— Ry,
E'=1+Ry — R, o(rst)= Ry, = Ry +J (40)

P=4(1-D)(1~E)-}(A'+B'+C"Y+3D'+E'-2).

and s'=J+2, for even permutations of (rst)=(123}). Interchanging res in A, B,
C', D, E' of (40) gives A, B, C, D, E given by (38) for odd permutations of (123).
it is customary to caii the basic hypergeometric series in ¢ as type I and the series in
g (s'=J+2=D'+ E'— A'— B'— C') as type IL Since we now have ¢,s occurring in
(37) and (39) being considered as sets of three corresponding to even and odd
permutations of (rst)=(123), respectively we introduce the notation 1¢5(g) and
o2 g°) to denote these sets.

We notice that the reversal formula (18) precisely takes a polynomial in z to a

polynomial in ¢'"*/ z and, for the special case z = g, (18) gives a relationship between
a ,.10,(q,q) and a ,.,¢,(q, g°). Therefore, starting with (37) and (38} if we use the
reversal formula (18), we will arrive at (39) and {(40). The question arises as to whether
these two sets provide the g-generalization for the set of six ;F,(1)s. For, they belong
to two different types being polynomials in g and g°, respectively. Also, Bo-Yu Hou

et al (1989) have shown that

( VIR £ 13) " ( Jvo g2 ) (41)
myomy om0 \NmMy My Mg
but, instead
(jl ho s ) =(_1),~.+,»2+,»,( B2 ja) (42)
My omy My gt my my om/,

This is due to lack of symmetry of (30) under g— g~'. In the set of three ;¢5(q) given
by (37), (38), if we substitute g—>¢g~', we get

(}'1 Ja js)
m. m; M/ !

=(—1J"‘"”q”( 1 [R;k]!/ml]z)'“

ik=1

. [ABC
X(Fq(l_A,l-'B,l_C,D,E)) l3¢2[ D E ;Q’Q] (43)
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where o{rst) and s =J+2 are as in (38) but
DE
P:—aA+B+cyaD+E+n+3: (44)

This set of three series corresponding to even permutations of (rst) =(123) will be
denoted by '1¢5(¢"). These along with the set of ';¢3(g°) given in (39), (40} constitute
the set of six 3¢,(g")s which provide a g-generalization of the set of six , F,(1) functions.

In the set of three '3¢:3(¢*) functions given by (39), (40), if we substitute g —» g
we get

(jl J2 j:)
my, My My g7

k] 1/2
= (‘U"‘"”QP( IT [RadV/[J+ 1]5)

k=1

X(Fv“—A,l*B,l—C,D,E))“m[A’B’C' }

pE %4 (37
where o(rst) is as in (40) and P is as in (38). Notice that (37"} differs from (37) only
through a phase factor, consistent with (42). This set of three series representations
correspond to odd permutations of (rs¢) = (123) and will be denoted by 1¢5(g), which
along with the set of three ;¢5(g) given by (37), (38) constitute the set of six ;¢,(q)
functions.

The two sets of three functions j&5(g) and '1¢%(g°) can be shown to be related to
one another by reversal of series. The interconnection between the four sets of three
4¢,8 is given in the schematic figure 1.

Set of three Set of three
s¢ala) Revarsal 33(q7)
a-a" LR
Set of three Set of three

Bheind Reversal 140
H ab3(q}

Figure 1. Interconnections between the four sets of three ¢, functions (defined in the text).

In the limit g = 1, the above-described sets of 3¢, functions will reduce to two sets
of three ; F3(1) functions which correspond to even or odd permutations of the columns
of the 3-j coefficient. This is schematically shown in figure 2.

Thus, either the three }¢$(g) functions and the three j¢35(g) functions, or the three
"1¢3(g") functions and the three ';¢35(¢") functions, constitute equivalent g-general-
jzations of the set of six ;F>(1) functions lor the 3-j coefficient and their inter-
relationships are as in figure 1.

Starting with the Van der Waerden set of six ;¢, functions (belonging to set I or
set 11 corresponding to series expansions in g or g°, respectively), using the transforma-
tions (20), (27) and (28), we get different formulae for the g —3+j coefficient, First, we
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Set of three Set of three
3F2“) Revarsal 3F2(1)
even perms odd perms
Q*h]u 4971
Set of three Set of three Set of three Set of three
Y3la’) et so3la) Reversat 5631g°) aa’ s93(q)

Reversal

Figure 2. Set of six 3 F,(1)s and their g-generalizations.

use (20) to obtain the g-generalizations of the Wigner, Racah and Majumdar forms
for the g —3-j coefficient. These forms are derived by simply using the g-analogue of
the Erdelyi-Weber transformation, given by (20}, on (37) and (37'), in three different
ways. Corresponding to (37), the general form for the g —3-f coefficient thus obtained
18

(1'1 Ja ja)
ny o m; My

3 1/2
= 5m,+m2+m],o(—1)”“"’q"( [I [RaIV/IT+ 1]!)

k=1

xT [1-D1-A, 1-C" E', 1+ A'—= D', 1 + B'— E', 1+ C'— D]

Ar, BI, Cl .
Xa¢hy D E 4. q (45)

with A', B", C', D',E"asintable 1, e=s'=D'+ E'— A'-= B'— C’ and
P=3(E'-BYA'+C)-A'C+i(2B -A'-C'-D'~E'~1). (46)

This set corresponds to }¢5(¢") in our notation, since (37) and hence (45) is for even
permutations of (rst) = (123). Similarly, corresponding to (37') we would get a general
expression (45) which differs from (45) only in that the LHs of (45') would be

(jl J2 f3)
m, Mp; My

and o(rst) would be as in {40) for odd permutations of (rst}=(123) and P is as in
{46). (We have not written down (45'}, explicitly.)

This set given by (45'), (46') corresponds to '3¢3(¢*) in our notation. Thus, the
Weber-Erdelyi transformation (20) when applied te (37), (37') results in the transforma-
tion of the set of Van der Waerden {¢5°(g) into the Racah, Wigner or Majumdar set
of '165°(q").

Here, it is to be noted that (20) is a g-analogue of the Weber-Erdelyi transformation
I and not the exact analogue, since (20) is not for

-n, a,
3¢2|: JB;q,Z]
Y, 8
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Table 1. Use of the g-analogue of the Weber-Erdelyi transformation T given by {20) results
in the expression (45). Column 1 refers to the use of (20}, column 2 gives the numerator
and denominator parameters of the ;¢, in (45) and column 3, the identification of the
result of the use of (20) on (37} and (37').

Parameters in (20) Parameters in (45) Identification of (45)
—-n=-R,, A=-R,, g-Racah
a=-R,, B'=1+R;, Nésg")
ﬂ=_Rl| C':_R?as
y=1+ Ry — Ry, D¥=—Ry, —R;,
§=1+R,,—R,;, E'=1+R; — Ry,
—n=-R;, Al=—R,, g-Majumdar
@ =—R,, B'=1+R,, "165°(q")
B=_R2r Cr=_er
‘YE]-‘-RJI?RZJ’ Dﬂzi‘RZ:ARJs
8=1+R,,- R;, E'=1+R,, - R;,
—-n=-R,, A'=-R, gq-Wigner
a=-R,, B'=1+Ry H#5°(a™)
B =R, C'=—R,,
y=1+R;, - R;, D'=- R,, Ra;
L —1.1L D = I:"
U—ITI\Z{_I\sﬁ ﬁlTI\z,‘*I\JS
From the '1¢5°(g") forms by reversal [95°(g} and by g- ¢ '1¢5%(g) are obtained, as

given by the schematic diagram, figure 1. Note: As in the case of Rajeswari and Srinivasa
Rao (1989), the identification of y as 1+ R,,— R;, and & as 1+ R,, — R,, results only in
the same three sets but in a different order, namely g-Racah, g-Wigner and g-Majumdar
forms.

but only for

3¢2[_n’ * 'B; q, ‘I] .
Y &

Due to this reason (as stated in section 3), we cannot apply {(20) directly to the Van
der Waerden sets of three ';¢5°(g") given by (39) ana {(43). H()wever use of reversal
formula on the Racah, Wigner or Majumdar set of '1¢35(g°) and '1¢3(g") given by (45)
and (45') results in the corresponding ¢%(q) and i$3(q), respectively—the resultant
expressions after algebraic simplifications can be shown to be the same in form as (45)

and (45') but with ¢ =1 and
P=iE(A'+C' -DY+iB'+D+E -24"-2C"-2). {46")

Equivalently, use of g + ¢~ on the Racah, Wigner or Majumdar set of 5 H#5°(g°) results
in 3¢5°(q), as per the schematic diagram of figure 1. Thus the Racah Wigner, and
Majumdar set of six 3¢5°(g) and the equivalent set of six '3¢3°(g’) can be generated
from the corresponding Van der Waerden sets with the use of the Erdelyi-Weber

transformation 1.

Tahle 1 summarizes the identifications (r‘nhlmn l‘ to be made in (20) and the
resulting numerator and denominator parameters (column 2) for the ;¢,s in expression
(45). In column 3 are given identifications of the expression (45) as the g-analogues
of the Racah, Wigner or Majumdar sets of 3¢, functions. We can identify {41b), (42)

and (46} of reference I to correspond to {rst)=(132) in the g-Racah 162(q) set, to
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(rst)=1(123) in the g-Racah '1¢3(g°) set and to {rst) =(321) in the g-Wigner 365(q)
set, respectively.

The use of the transformation (27)—viz. the g-analogue of the Weber-Erdelyi
transformation 1, which exhibits manifestly e« f symmetry-—on (37) results in the
general expression

{jl j2 13\

\ ml Hiy m3/q

) 3 1/2
= 'Smt+m1+m,.0(—'l)°(””qp( H [R,k]!/[.l'i"l]!)

ik
x[,[1-D',1-E;1-A 1-B',1+A' - D,
1+A'—E, 1+B'-D', 1+ B —E’, s']

Af, B’, Cf .
x3¢2[ g 0 *9 ] (47)
with A', B', C’, D', E' as in table 2, e =1, and
P=3-AB +(1-s}YA'+B))-HA'+B' +C)+y(D'+ E'-2) (48)

for even permutations of (rst)=(123); which set we denote by i¢5(g). Similarly,
corresponding to {37} we would get a general expression (47'), which differs from
(47) only in that its LHS would be

(J’. Ja j3)
m m; N/ !

Table 2. Use of the g-analogue of the Weber-Erdelyi transformation 11 given by (27)
results in the expression (47). Column 1 refers to the use of (27), column 2 gives the
numerator and denominator parameters of the ¢, in (47} and column 3 identifies the

..... 1 ~F tha ca AF (7Y Am (2T namd (270
TeaUI O v USC O (47 ) UN (F/) alid (D7 -

Parameters in (27} Parameters in (47) Identification of {47)

-n=-R,, A'=—R;, 2365°(q)

a=~—R;,

B=—R,

{rst}=(123) corresponds to the

b=-R,, C'=-J-1 g-analogue of {26) of Raynal
e=1+R; —R,, D'=—R, — Ry,
f=1+R; - R, E=—-R; — R,

—n=-Ry, A'=—Ry, 1657(q)
a=-R,, B'=-R,, (rs1) = (123) corresponds to the
b=-R,, Cr=—J-1\ g-analogue of (27) of Raynal
e=1+R;,—R,, D'=—R,, —R;,
f=1+R, —R;, E'=—=R;, —R;,

-n=-R, A'=—R,, 3659
a=-R,, 8'=-R, {rst)=(123) and m; - —m;
b=-R;, C'==J-1 corresponds to the g-analogue of
e=\1+R; - R,, D'=-R,,—R; (27) of Raynal
f=1+Ry, — Ry, E'=—R -R,,
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and o(rst) would be as in (40) for odd permutations of (rst) = (123)—(we do not write
down (47"} explicitly)—which we denote by 3¢3(g). Use of g— g~ on these }¢5°(q)
sets will result in '3$5°(¢*) and the expressions can be shown (after simplification) to
be the same as (47), (47}, except for ¢ = s’ and

A, B' ’ 1 et ] ] I i
P=" (A 1)+ (B + 1) +YD'E' ~(4'+ B)(D'+ EY)]

-HA'+B'+C'+D'+E'+1). (48"
Table 2 summarizes the identifications to be made in (27) and the resulting
numerator and denominator parameters for the ;¢, in expression (47) or (47"). In
column 3 of this table are given the identification of a member of the set (47) or (447",
as the g-analogue of the form corresponding to (rst) =(123), given by Raynal (1978).
The first and third entries in this table can be identified with equations (44) and (45)
of reference 1. They are obtained by setting for the parameters (given in column 2 of
table 2) (rst) =(132) in 1¢3(q") and (rst) =(321) in '13(g"), respectively.
The use of transformation (28)—viz. the terminating g-analogue of the Kummer-
Thomae-Whipple formula, which exhibits manifestly b <> ¢ symmetry—on (37) results
in

(1'1 R j3)
m, My My/,

1/2
= 3m1+m2+m3'0(—1)”("')qp( f_[ [RiJY/ LT+ 1]!)

xI [E'—A1-A1+B' -D' 1+ C'-D', D", E', 5]

Af’ Bf’ Cf .
X3¢, D g % (49)

where A’, B, C', D', E" are as in table 3, £¢=1 and

1

A.'
P=%(D’-—B’)(D’—C’)+?(B'+ CY-HA'+D +1)+i(B'+C'—E" (50)

for even permutations of (rst)={123); which set we denote by i¢5(g). Similarly,
corresponding to (37) we would get a general expression (49'), which differs from
{49) only in that its LHs would be

(jl J2 js)
By My My )

and o(rst) would be as in (40) for odd permutations of (rst) = (123) (we do not write
down (49") explicitly) which we denote by i#5(g). Use of g—g~' on these ;¢3°(¢)
sets will result in "1¢5°(g°) and the expressions can be shown (after simplification) to
be the same as (49), {49’), except for £ = s’ and

P=(1-D)1-5)+A'D]-L4A'+ B'+C)+ D'+ E'-2). (50)

Table 3 summarizes the identifications to be made in (28) and the resulting
numerator and denominator parameters for the ,é, in expression (49) or (49'). In
column 3 are given the identification of a member of the set (49) or (49"), as the
g-analogue of the form corresponding to (st} = (123) given by Raynal (1978). Equation
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Table 3. Use of the g-analogue of the Kummer-Thomae-Whipple transformation (28}
results in the expression (49), The parameters in (28) and (49) are given in columns 1 and
2, and column 3 gives the identification of the result of the use of (28} on (37) and (44).
The expression (49) corresponds to 3¢5°(g) from which by g— g~ the sets '}5°(q"} are
obtained, as per the scheme given in figure 2.

Parameters in (28) Parameters in (49) Identification (49)

-n=-R,, A'=—R,, (rst) ={123) corresponds to the
b=-R,, i B'=1+R,, g-anatogue of Raynal F,(0; 25)
c=-R,, C'=1+R,,
d=1+R;, —R,, D'=1+R,, ~R,,
e=1+R,, - R, E'=2+R,, +R,,

—-n=-R,, A'=—R;,, (rst) ={123) corresponds to the
b=-R,, B=1+R,, g-analogue of Raynal (16)
c=—R,, C'=1+R,,
d=§+R; ~R;, D'=1+R; — Ry,
e=1+R,, - Ry, E'=2+R,.+R,,

-n=-Ry, A'=—R,, (rst) = {123} corresponds to the
b=—R,, B'=1+R,, g-analogue of Raynal F,(0; 35)
¢=-R,, C'=1+R,,
d=1+R; ~R,, D'=1+R, —R,,
e=1+R, ~R;, E'=2+ R, + Ry,

—n=-R;, A'=—-R,, (rs1} = (123} corresponds to the
b=—R,, B'=1+R,, g-analogue of Raynal F,(0; 24)
e=-R,, C'=1+R,,
d=1+Ry,-R,, D'=1+R, -R,,
e=1+R; — Ry, E'=2+R,, + R,

-n=-R;, A'=—R,, (rst)=(123) corresponds to the
b=-R, B'=1+R;, g-analogue of Raynal {(15)
¢=-R,, C'=1+R,,
d=1+R;, —R,, D'=1+R,, —R,,
e=1+R, — Ry, E'=2+R,, +R,,

-n=-R,, A'=-R,, {rst} =(123) corresponds to the
b=-R,, B'=1+R,, g-analogue of Raynal (17)
c=—R,, C'=1+R,,
d=1+R, -R,, D'=1+R,, - Ry,
e=1+R,, - Ry, E'=2+4 R, + Ry,

{59a) in reference I can be identified with one member of the first entry in table 3 for
(rst) =(312) in the parameter set given in column 2 for the }¢5(g). The other entries
in this table have no equivalents in reference I.

We find that the use of reversal formula on the sets of three {»5°(q) and '1¢$°(g")
of the form (47)—obtained by the Weber-Erdelyi transformation 11 (27) on the Van
der Waerden sets given by (37) and (37')—leads one to sets of three '1¢$5°(g") and
165°(q) of the form (49), obtained by kTw transformation (28) on the Van der Waerden
sets (37) and (37'). This is schematically shown in figure 3.

Thus, to summarize (as far as the identification of the results in our paper with the

the ones in reference I goes), in tables 1-3 are given 12 sets each of 195°(q) and
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Equation (47) Equation (49) Equation (47) Equation (49}

Set of three Set of three Set of three Set of three
3b3{q) 5¢3(q%) 303(q®) 1$3(9)

Reversal Fevaraal

Equation {47') Equation {49} Equation {477 Equation (49°)

Set of three Set of three Set of three Set of three
1$3(q) 363(a*) 33(q*) 393(q)

{a) {b)

Figure 3. Role of reversal on (47), (47') resulting in (49'), (49).

195°(g"), where e and o represent even and odd permutations of (123). All these 12
sets were generated from the given Van der Waerden sets of j¢5°(q) and '1¢5°(g").
In all, we have therefore listed 156 ;¢, forms for the g — 3-j coefficient, of which seven
1, forms alone are given in reference I

The middle columns of tables 1-3, as well as the expressions (45) and (45"), (47)
and (47"), (49) and (49") reveal their invariance under A'e& C'; A'«>B' and D' E’;
B’ C', respectively. As in Rajeswari and Srinivasa Rao (1989), only the Van der
Waerden forms (37), (39), (43) and (44) clearly exhibit the §;X S, symmetry due to
their invariance under the 3! numerator and 2! denominatoer parameter permutations.

5. g-analogues of the 6-j coefficients

Kirillov and Reshetikhin (1988) have explicitly derived an expression for the g —6-j
coefficient by generalizing the procedure of Racah (1942) and obtained

R
{ a b "} = (—1)5*P*<+4 7 (abe)Ar(cde)Ag(acs YAr(bdf)

) ~ 'y
L v Jgqg

><§(—1)"[P+1]!(l_ljl prﬁat.-]?j[j1 [B,-—P]!) | (51)
where
a,=athb+te ay=ct+d+e a;=atc+f o, =b+d+f
Bi=a+btc+d B.=a+d+e+f Bi=btctetf
and

max(a,, a;, a3, as) < p<=min(B,, B:, B} (52)

and Ag(xyz) is defined in (31). In their symmetric notation (4), for the basic number,
by simply replacing the g-factorials by ordinary factorials in the derived expressions
for the g — 6-j coefficient, the known expression for the 6-j coefficient can be obtained.
This felicity does not pertain to the g~3-j coefficient, even for special values of its
arguments. It is necessary to resort to the asymmetric Heine notation (3), to enable
one to write the ¢ —6-j coefficient as a basic hypergeometric series. In the Heine
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notation (51) becomes

b 4 3 =1
{; . ;} = N% (-1)P[p+ 1]!(f=Hl [p ~a,»]!£[] [Bj—p]!) (53)
where

(1/4) (B, +B,+8) e+ aytay+e,)

q
xq*(l,’d)[al(al+l)+a2(a2+l)+a3(aj+l)+u4(u4+)]A(abe)A(cde)A(acf)A(bdf)'

N = g /408,08, -1+ 28,8;-1)+265(8,=1)]

Substituting n=8;,—p (j=1,2,3) in (53) and using the same procedure adopted in
the case of the g—3-j coefficient, we get

{o 0

=(-1)*""Mg"T [1-E;1-A,1-B,1-C,1- D, F, G]

X 4tbs [A’ BGDb q} (55)
E FG

where -
A=-R,, B=-R,, C=—R,, D=-R,,
E=-R,,—R;—Ry,— Ry —1 F=1+R;,—R;,
G=11tR, — Ry M = A(abe)A(cde)A(ach )A(bdS),

and

P=3i{(E+1E+2)-(F-E-2(F-E-3)—(G—E-2){(G—-E-3)]
+{F+G-E-3). (56)

In (56), the R, represent the elements of the Bargmann (1962) and Shelepin (1964)
4x 3 symbol:

Bri—a, Baray B3

a b e Bi—a: Br—a;, Bi—a;
= = Rik .
{d < f} Bi—ay Ba—a; Bi—a; ” ” 57

Bi—ay Br—a, Bi—ag4

It is to be noted that for cyclic permutations of ( pgr) =(123), we obtain the set I of
three ,¢;(gq) functions which in the limit g -1 results in the set I of three ,F5(1)
functions for the 6-j coefficient (Srinivasa Rao et al 1975).

Substituting n=p—a;, (i=1,2,3,4) in (53) and adopting the same procedure,
we get

{a b e}
d ¢ f),
={-1)*Mq"T,[451-B,1-C",1-D"E', F', G']

Af’ Bl, C,! Df
X 43 E F. ¢ 4, q (58)
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where

A'=R,+R,+R,;+2 B'=-R,, C'=-R,, D'=-R,,

E'=R, —R, +1 F'=R,—R, +1 G'=R,— R, +1

P'=—3[(A=B'-2)(A'=B'=3)+{(A'=C'-2)(A'-=C'-3)+ (A= D'-2)({A’'— D'-3)]
+i(A'—B' - C'—D' -2 +2(A - 2)(A'-3)] (59)

for cyclic permutations of (pgrs)=(1234). In the limit g - 1, this set of four ,¢.(q)
functions reduce to the set I of four ,F;(1) functions for the 6-j coefficient (Srinivasa
Rao and Venkatesh 1977).

The expressions (55), (56} are invariant under the permutation of A, B, C, D and
F, G, so that each one of the three basic hypergeometric series belonging to set |
accounts for 48 symmetries of the g —6-j coefficient. Similarly, the expressions (58},
(59) exhibit invariance under the permutation of B’, C', D’ and E’, F', G, so that
each one of the four basic hypergeometric series belonging to set IT accounts for 36
symmetries of the g —6-j coefficient. Thus, these equivalent sets are necessary and
sufficient to account for the 144 symmetries of the g —6-f coefficient.

Unlike the case of the g —3-j coefficient, the basic hypergeometric functions occurr-
ingin (55) and (59) are Saalschutzians since the numerator and denominator parameters
satisfy the conditions

A+B+C+D+1=E+F+G

A+B+C'+D'+1=E'+F+G'". (60)
Due to this property, when the reversal formula (18) is used in (55) or (58), the basic
hypergeometric series which is a polynomial in ¢ transforms into a polynomial in ¢’
or ¢° but due to the Saalschutzian condition {(60), s=FE+F+G-A-B-C~D=1
and s’=E'+F'+G'—A'—B'— C'—D’=1. The fact g° = ¢ also is a pointer to a sim-
plification in the structure of the g-generalization of the 6-j coefficient in terms of
basic hypergeometric series. It is straightforward to show that (55) and 58}, like the
Kiriltov-Reshetikhin formula for the g —6-j coefficient, are invariant under g ¢~
transformation so that

a b e a b e
{d c f}f{d c f} (61)

After simplifications it can be shown that reversal (18} transforms set I {55) into set
II (58) and vice versa.

In (55), when { pgr) = (123), use of the ,¢:{q) transformation (26) results in the
new expression for the Racah coefficient given by (11) of Kachurik and Klimyk (1990).
In fact, this latter equation itself can be shown to be a g-generalization of the formula
(17) of Raynal (1979)—on which are superimposed column and ‘row’ permutations

to get
{c e d}
f b al

It is to be noted that while a 4¢:{g) belonging to set 1 or set 11 accounts for 48 or 36
respectively of the 144 symmetries of a g —6-j coefficient, the new ,¢,(q) form given
by Kachurik and Klimyk (1990) exhibits only eight symmetries, since permutation of
a positive parameter with a negative parameter will not yield a known, meaningful
symmetry (see Srinivasa Rao et al 1975).
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6. Summary

g-generalizations of the set of six ; F,(1) functions, necessary and sufficient to account
for the 72 symmetries of the g —3-j coefficient have been derived. The structure of the
g-generalization of the set has been analysed in terms of the reversal and g—>gq '
transformations. From the symmetric Van der Waerden form for the set of six 3¢
functions, using the g-analogues of the Erdelvi-Weber transformation 1, the g-
analogues of the Racah, Wigner and Majumdar sets were obtained. Use of the g-
analogue of Erdelyi-Weber transformation 1I and the Kummer-Thomae-Whipple
transformation on the Van der Waerden set of ¢, resulied in nine sets of 3¢, forms,
one member of each set being a g-analogue of a ,F,(1) form found by Raynal (1978).
Of the 156 3¢, forms listed in tables 1-3 for the g —3+ coeflicient, seven ;¢, forms
are also given by Groza et al (1990).

The g —6-f coefficient, unlike the g —3-j coefficient, exhibits g > g~' symmetry. The
g-generalizations of the sets 1 and II of three and four ,F;(1) functions, respectively,
necessary and sufficient to account for the 144 symmetries of the g —6-j coefficient
have been derived. These two sets are related to each other by the reversal of series.
Given any one of the ,¢; belonging to either of the sets, all the elements of the other
set can be obtained using the reversal formula. A member belonging to set I of ,¢s(g)s
for the g—6-j coeflicient, when transformed by (26), yields the ,¢, form given by
Kachurik and Klimyk (1990}, which is a g-generalization of formula (17} in Raynal
(1979).

The sets of ;¢. forms and the sets of ¢, forms for the g—3-j and the g —6-j
coefficients given here thus reveal the full structure of the g-generalizations of the 3-j
and the 6-j coefficients and contribute to the complete understanding of this aspect of
the Racah-Wigner algebra of SU,{2).
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